Assessment of Near-Fault Ground Motion Effects on the Fragility Curves of Tall Steel Moment Resisting Frames

Authors

  • Saeid Pourzeynali Dept. of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
Abstract:

Nowadays it is common to use the fragility curves in probabilistic methods to determine the collapse probability resulting from an earthquake. The uncertainties exist in intensity and frequency content of the earthquake records are considered as the most effective parameters in developing the fragility curves. The pulse-type records reported in the near-fault regions might lead to the major damages in the structures having moderate and long periods since response spectra of near-fault ground motions within the long period range are different from those of the far-fault ground motions. In the present study, the influence of this type of earthquake records on the fragility curves of the steel special moment resisting frames, SMRFs, was examined. The results indicated that the median value of the collapse capacity (i.e.ŜCt Parameter, which defines the earthquake intensity leading to the collapse of the structure in half-set of the chosen records) due to near-fault ground motions was 76% that of the far-fault records for the ten-story example SMRF.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

assessment of the park- ang damage index for performance levels of rc moment resisting frames

چکیده هدف اصلی از طراحی لرزه ای تامین ایمنی جانی در هنگام وقوع زلزله و تعمیر پذیر بودن سازه خسارت دیده، پس از وقوع زلزله است. تجربه زلزله های اخیر نشان داده است که ساختمان های طراحی شده با آیین نامه های مبتنی بر نیرو از نظر محدود نمودن خسارت وارده بر سازه دقت لازم را ندارند. این امر سبب پیدایش نسل جدید آیین نامه های مبتنی بر عملکرد شده است. در این آیین نامه ها بر اساس تغییرشکل های غیرارتجاعی ...

15 صفحه اول

Robustness Assessment of Steel Moment Resisting Frames

Nowadays, many buildings with steel Moment Resisting Frames (MRF) are built in seismic zones when seismic codes are at its early stages of development, and as such, these structures are often designed solely to resist lateral wind loads without providing an overall ductile mechanism. On the other hand, current seismic design criteria based on hierarchy of resistance allow enhancing the structur...

full text

Evaluating the effects of near-field earthquakes on the behavior of moment resisting frames

Following the 1994 Northridge and 1995 Kobe earthquakes, most of modern structures damaged seriously or devastated totally despite the seismic codes of these countries that had been expected to bear advanced criteria for seismic design of structures. After extensive research, the most probable reason of those destructions was attributed to special specifications of near-field earthquakes. In th...

full text

OPTIMUM PERFORMANCE-BASED DESIGN OF CONCENTRICALLY BRACED STEEL FRAMES SUBJECTED TO NEAR-FAULT GROUND MOTION EXCITATIONS

This paper presents a practical methodology for optimization of concentrically braced steel frames subjected to forward directivity near-fault ground motions, based on the concept of uniform deformation theory. This is performed by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In this regard, to ove...

full text

Seismic Fragility Assessment of Steel SMRF Structures under Various Types of Near Fault Forward Directivity Ground Motions

In this paper, the seismic collapse probability of special steel moment-resisting frame (SSMRF) structures under near fault pulse-like and far fault ordinary ground motions is evaluated through fragility analysis. For this purpose, five sample frames with 3 to 15 stories are designed and imposed to the ground motion excitations with different characteristics. Fragility curves are derived for th...

full text

evaluating the effects of near-field earthquakes on the behavior of moment resisting frames

following the 1994 northridge and 1995 kobe earthquakes, most of modern structures damaged seriously or devastated totally despite the seismic codes of these countries that had been expected to bear advanced criteria for seismic design of structures. after extensive research, the most probable reason of those destructions was attributed to special specifications of near-field earthquakes. in th...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 53  issue 1

pages  71- 88

publication date 2020-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023